Definitions: Supervaluations

Philosophical Logic 2025/2026

1 Supervaluations

1.1 Models

Definition 1.1 (Model). A model is a pair $M = \langle V, R \rangle$ with $V \neq \emptyset$, $V \subseteq \{0, 1\}^P$, and $R \subseteq V \times V$. Thus each element $v \in V$ is itself a classical valuation $v : P \to \{0, 1\}^1$.

1.2 Satisfaction

Let *P* be a set of propositional variables. For a model $M = \langle V, R \rangle$ and $v \in V$:

$$\begin{array}{lll} M,v\models p & \text{iff} & v(p)=1 \\ M,v\models \neg \phi & \text{iff} & M,v\not\models \phi \\ M,v\models \phi \land \psi & \text{iff} & M,v\models \phi \text{ and } M,v\models \psi \\ M,v\models \phi \lor \psi & \text{iff} & M,v\models \phi \text{ or } M,v\models \psi \\ M,v\models \phi \to \psi & \text{iff} & M,v\not\models \phi \text{ or } M,v\models \psi \\ M,v\models \Delta \phi & \text{iff} & \forall v'\in V \left(vRv'\Rightarrow M,v'\models \phi\right). \end{array}$$

Supertruth

$$M
otin^1 \phi : \iff \text{ for all } v \in V (M, v \models \phi).$$

We write M
vartherpi Γ to mean M
vartherpi γ for all $\gamma \in \Gamma$.

1.3 Global Consequence

$$\Gamma \models_{g} \phi$$
 iff for all models $M(M \models^{1} \Gamma \Rightarrow M \models^{1} \phi)$.

1.4 Local Consequence

$$\Gamma \models_{l} \phi$$
 iff for all models $M \forall v \in V (M, v \models \gamma \text{ for all } \gamma \in \Gamma \Rightarrow M, v \models \phi)$.

¹This presentation identifies each "world" with a classical valuation $v: P \to \{0, 1\}$. It is more standard to distinguish explicitly between frames and models: a *frame* is $F = \langle U, R \rangle$ (with $U \neq \emptyset$), and a *model* is $M = \langle F, \pi \rangle$ with $\pi: U \times P \to \{0, 1\}$. Then the atomic clause is $M, u \models p$ iff $\pi(u, p) = 1$, and the determinacy clause is $M, u \models \Delta \varphi$ iff $\forall u' \in U (uRu' \to M, u' \models \varphi)$. The current "worlds-as-valuations" setup is recovered by taking U = V and $\pi(u, p) = u(p)$.

1.5 Subtruth and Subfalsity

Definition 1.2 (Subtruth & Subfalsity). For a model $M = \langle V, R \rangle$ and formula ϕ :

1.6 Subvaluationist Consequence

Definition 1.3 (Global subvaluationist consequence).

$$\Gamma \models_{g}^{\exists} \phi \quad \textit{iff} \quad \textit{for all models } M \ (M \models^{\exists 1} \Gamma \Rightarrow M \models^{\exists 1} \phi)$$

where $M \models^{\exists 1} \Gamma$ abbreviates $M \models^{\exists 1} \gamma$ for all $\gamma \in \Gamma$.